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Abstract. When sensors are deployed into a space instead of a plane,
the mathematical model for the sensor network should be a unit ball
graph instead of a unit disk graph. It has been known that the minimum
connected dominating set in unit disk graph has a polynomial time ap-
proximation scheme (PTAS). Could we extend the construction of this
PTAS for unit disk graphs to unit ball graphs? The answer is NO. In
this paper, we will introduce a new construction, which gives not only
a PTAS for the minimum connected dominating set in unit ball graph,
but also improves running time of PTAS for unit disk graph.
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1 Introduction

Virtual backbone in wireless sensor network has a wide range of applications (cf
[3] and references there). A virtual backbone is a subset of nodes D such that
non-adjacent nodes can communicate with each other though the nodes in D.
Modeling the wireless sensor network as a graph, the virtual backbone is exactly
a connected dominating set. A dominating set of a graph G is a subset D of
vertices such that every vertex x in V (G) \ D is adjacent to a vertex y in D.
Vertex x is said to be dominated by y, or y is said to dominate x. A vertex y ∈ D
dominates itself. A connected dominating set is a dominating set D such that the
subgraph of G induced by D, denoted by G[D], is connected. Because of source
limitation, it is often required that the size of the virtual backbone is as small as
possible. Hence we are faced with a minimum connected dominating set problem
(MCDS): to find a connected dominating set with the minimum cardinality. The
MCDS has been studied extensively in the literatures [2,11,12,14,15,16,18].
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In practice, the sensors are often assumed to be homogeneous, that is, they
have omnidirectional antennas with the same transmission range. In this case,
the topology of the 3-dimensional wireless sensor network can be modeled as a
unit ball graph. In an unit ball graph (UBG), each vertex corresponds to a point
in the space, two vertices are adjacent if and only if the Euclidean distance
between their corresponding points is less than or equal to one. In another word,
a vertex u is adjacent with a vertex v if and only if u is within the transmission
range of v, which has been scaled to one. When restricted to the plane, a unit ball
graph degenerates to a unit disk graph (UDG). Compared with the large number
of studies on UDGs, the study on UBGs are relatively much less. However, there
are cases in which 3-dimensional models are needed, such as under-water sensor
systems, outer-space sensor systems, notebooks in a multi-layered buildings, etc.

For MCDS in general graphs, it was proved in [8] that for any 0 < ρ < 1, there
is no polynomial time ρ lnn-approximation unless NP ⊆ DTIME(nO(lnn)),
where n is the number of vertices. A greedy (ln Δ + 3)-approximation [13] and
a greedy (ln Δ + 2)-approximation [8,13] were given, where Δ is the maximum
degree of the graph. When restricted to UDG, the MCDS problem is still NP-
hard [7]. Hence computing an MCDS in a UBG is also NP-hard. Distributed
constant-approximations for MCDS in UDG were studied in [1,5,10,17], etc. Also
by distributed strategy, Butenko and Ursulenko [4] gave a 22-approximation for
MCDS in UBG. As to centralized algorithm for CDS in UDG, Cheng et al [6]
gave a polynomial time approximation scheme (PTAS), that is, for any ε > 0,
there exists a polynomial-time (1 + ε)-approximation. The question is: can their
method be generalized to obtain a PTAS for MCDS in UBG? The answer is ‘no’,
since their proof depends on a geometrical property which holds in the plane but
is no longer true in the space.

In this paper, we present a PTAS for UBG. The method of analyzing the
performance ratio is new. In fact, this method can be used to compute CDS for
any n-dimensional unit ball graph. Furthermore, when our method is applied to
UDG, the running time can be improved, compared with the algorithm presented
in [6].

In section 2, the algorithm is presented, the correctness is proved, the time
complexity is analyzed. In section 3, we prove that this algorithm is a PTAS. A
conclusion is given in section 4.

2 The Algorithm

In this section, we present an algorithm for MCDS in UBG. The algorithm uses
partition technique combined with a shifting strategy (which was introduced by
Hochbaum and Maass [9]).

Let Q = {(x, y, z) | 0 ≤ x ≤ q, 0 ≤ y ≤ q, 0 ≤ z ≤ q} be a minimal 3-
dimensional cube containing all the unit balls. For a given positive real number
ε < 1, let m be an integer with m = �300ρ/ε�, where ρ is the performance
ratio of a constant-approximation for MCDS in UBG, for example ρ = 22 by
the algorithm given by Butenko and Ursulenko [4]. Set p = �q/m� + 1, and
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Q̃ = {(x, y) | −m ≤ x ≤ mp, −m ≤ y ≤ mp, −m ≤ z ≤ mp}. Divide Q̃ into
(p + 1)× (p + 1)× (p +1) grid such that each cell is an m × m × m cube. Denote
this partition as P (0). For a = 0, 1, ..., m − 1, P (a) is the partition obtained by
shifting P (0) such that the left-bottom-hind corner of P (a) is at the coordinate
(a − m, a − m, a − m). For each cell e, the boundary region Be of e is the region
contained in e such that each point in this region is at most distance 3 from the
boundary of e. The central region Ce of e is the region of e such that each point
is at least distance 2 away from the boundary of e. Note that Be and Ce have
an overlap.

Algorithm
Input: The geometric representation of a connected unit ball graph G and a
positive real number ε < 1.
Output: A connected dominating set D of G.

1. Let m = �300ρ/ε�.
2. Use the ρ-approximation algorithm to compute a connected dominating set

D0 of G. For each a ∈ {0, 1, ..., m − 1}, denote by D0(a) the set of vertices
of D0 lying in the boundary region of P (a). Choose a∗ with the minimum
|D0(a)|.

3. For each cell e of P (a∗), denote by Ge the subgraph of G induced by the
vertices in the central region Ce. Compute a minimum subset De of vertices
in e, such that

for each component H of Ge, G[De] has a connected
component dominating H . (1)

4. Let D = D0(a∗) ∪
⋃

e∈P (a∗) De.

The following lemma shows the correctness of the algorithm.

Lemma 1. The output D of the algorithm is a CDS of G.

Proof. We first show that D is a dominating set. For each vertex x ∈ V (G),
suppose x is in cell e. If x ∈ Ce, then x is dominated by De. If x ∈ e \Ce, then x
is in the region of e at distance less than two from the boundary of e. If x ∈ D0,
then x ∈ D0(a∗). If x 
∈ D0, then the vertex y ∈ D0 which dominates x is in
D0(a∗). By the arbitrariness of x, D is a dominating set of G.

Next, we show that G[D] is connected.
Suppose F1, F2 are two components of G[D0(a∗)] which can be connected

by D0 through the central region of some cell e. Then there exist two vertices
x1 ∈ V (F1) ∩ Be ∩ Ce and x2 ∈ V (F2) ∩ Be ∩ Ce such that x1, x2 are in a same
component H of Ge. By step 3 of the algorithm, x1 and x2 are connected through
De, and thus F1 and F2 are also connected through De ⊆ D. We have shown
that any components of G[D0(a∗)] are connected in G[D].

Let G̃ be the component of G[D] containing all vertices in D0(a∗). If G̃ 
=
G[D], then there exists a cell e and a component R of G[De] such that V (R) ∩
D0(a∗) = ∅ and R is not adjacent with any vertex in D0(a∗). Let x be a vertex in
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D0 such that x dominates some vertex y ∈ V (R) (y may coincide with x). Since
x 
∈ D0(a∗), we have x ∈ e\Be. Hence y ∈ Ce. Let H be the connected component
of Ge containing y. By step 3 of the algorithm, we see that R dominates H . Since
G[D0] is connected, there is a path in G[D0] connecting x to the other parts of G
outside of cell e. Such a path must contain a vertex z ∈ D0 ∩ Be ∩ Ce ⊆ D0(a∗).
Note that z is also in H . Hence there is a vertex w in V (R) dominating z,
contradicting that R is not adjacent with any vertex in D0(a∗). Hence G̃ = G[D],
and thus G[D] is connected. 
�

The following lemma is a well-known fact about dominating set and connected
dominating set.

Lemma 2. For any dominating set D in a connected graph, at most 2(|D| − 1)
vertices are needed to connect D. In particular, |D2| ≤ 3|D1| − 2, where D1, D2
are, respectively, a minimum dominating set and a minimum CDS.

The next lemma shows that the time complexity of the algorithm is polynomial
in n and ε.

Lemma 3. The above algorithm runs in time nO(1/ε3).

Proof. Clearly, the most time-consuming part is the third step. Since any ver-
tex in a

√
3/3 ×

√
3/3 ×

√
3/3 cube dominates any other vertices in the same

cube, we see that a minimum dominating set of e uses at most (
√

3m)3 vertices.
By Lemma 2, |De| ≤ 3(

√
3m)3. Hence the exhaust search takes time at most

∑(3
√

3m)3

k=0

(
ne

k

)
= n

O(m3)
e to compute De, where ne is the number of vertices in

e. It follows that the total time complexity is bounded by
∑

e∈P (a∗) n
O(m3)
e =

nO(m3) = nO(1/ε3). 
�

3 The Performance Ratio

In this section, we show that our algorithm is a PTAS for CDS in UBG. For this
purpose, we need the following two lemmas.

For a path P in G, the length of P , denoted by len(P ), is the number of
edges in P . Let H be a subgraph of G. For two subgraphs H1 and H2 of G, the
distance between H1 and H2 in H is distH(H1, H2) = {len(P ) | P is a shortest
path connecting H1 and H2 in H}. In another word, if distH(H1, H2) = k, then
H1 and H2 can be connected through at most k − 1 vertices of H . The following
lemma can be easily seen from the definition of dominating set.

Lemma 4. Let H be a connected subgraph of G, and D be a subset of V (G)
dominating H. If G[D] does not contain a connected component dominating H,
then there exist two components R and K of G[D] such that distH(R, K) ≤ 3.

The following lemma plays an important role in analyzing the performance ratio
of the algorithm.
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Fig. 1. When the partition shifts, each vertex falls into at most 12 boundary regions

Lemma 5. For any vertex u in a unit ball graph G, the neighborhood NG(u)
contains at most 12 independent vertices.

Proof. The result can be obtained by transforming the problem into the famous
Gregory-Newton Problem concerning about kissing number [19]. 
�

Next, we analyze the performance ratio of the algorithm.

Theorem 1. The algorithm is a (1 + ε)-approximation for CDS in UBG.

Proof. Let D∗ be an optimal CDS of G.
Note that when a runs over 0, 1, ..., m − 1, each vertex belongs to at most 12

boundary regions of P (a)’s (see Fig. 1). Hence

|D0(0)| + |D0(1)| + ... + |D0(m − 1)| ≤ 12|D0|,

and thus
|D0(a∗)| ≤ 12

m
|D0| ≤ 12ρ

m
|D∗| ≤ ε

25
|D∗|. (2)

In the following, we are to add some vertices to D∗ such that the resulting
vertex set D̃ satisfies:

(i) |D̃| ≤ |D∗| + 24|D0(a∗)|, and
(ii) for each cell e and each connected component H of Ge, G[D̃ ∩ e] contains

a connected component dominating H .
Before showing how to construct D̃, we first show that as long as this can be

done, then the theorem is proved. In fact, since De is a minimum subset of e
satisfying the requirement (1) and D̃ ∩ e satisfies (ii), we have
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|De| ≤ |D̃ ∩ e|.
Then it follows from condition (i) and inequality (2) that

|
⋃

e∈P (a∗) De| =
∑

e∈P (a∗) |De| ≤
∑

e∈P (a∗) |D̃ ∩ e|
= |D̃| ≤ |D∗| + 24|D0(a∗)| ≤ (1 + 24ε

25 )|D∗|.
(3)

Combining inequalities (2) and (3), we have

|D| ≤ |
⋃

e∈P (a∗)

D(e)| + |D0(a∗)| ≤ (1 + ε)|D∗|,

where D is the output of the algorithm. This proves the theorem.
In the following we show how to construct D̃ satisfying conditions (i) and (ii).
We first claim that for any cell e and any component H of Ge, H is dominated

by D∗ ∩ e. In fact, any vertex x ∈ V (H) is dominated by some vertex y ∈ D∗.
Since x ∈ Ce, we have y ∈ e.

Set D̃∗
e = D∗ ∩ e. Suppose D̃∗

e does not satisfy condition (ii). Then there is a
component H of Ge such that H is not dominated by one connected component
of G[D̃∗

e ]. By Lemma 4, there are two components R and K of G[D̃∗
e ] such

that distH(R, K) ≤ 3. That is, R and K can be connected through at most
two vertices in V (H) \ D̃∗

e . Add these vertices into D̃∗
e to merge R and K.

Continue this procedure until D̃∗
e satisfies condition (ii). Suppose k mergences

are executed. Then the resulting D̃∗
e satisfies

|D̃∗
e | ≤ |D∗ ∩ e| + 2k. (4)

Next, we use vertices in D0(a∗)∩e to compensate for the 2k term of inequality
(4). Suppose the components are merged in the order that: H1 is merged with
H2, H3 is merged with H4, ..., H2k−1 is merged with H2k. To simplify the
presentation of the idea, we first assume that the Hi’s are all distinct components
of the original G[D̃∗

e ]. Denote by Ie the region of e between distance 1 and 2 from
the boundary of e. For each i = 1, 2, ..., k, let xi be a vertex in V (H2i−1) ∩ Ie.
Such xi exists since H2i−1 dominates some vertex in H which is a component
in the central region of e (hence H2i−1 is within distance 1 from the central
region), and G[D∗] is connected (hence H2i−1 is accessible from the outer side
of e. Because D0 is a dominating set of G, there is a vertex zi ∈ D0 dominating
xi. Since xi ∈ Ie, we have zi ∈ Be, and thus zi ∈ D0(a∗)∩ e. Note that for i 
= j,
it is possible that zi = zj . However, in this case, xi and xj are independent since
they are in different components of G[D̃∗

e ]. Hence by Lemma 5, a vertex serves
at most 12 times as zi’s. Thus we have shown that

k ≤ 12|D0(a∗) ∩ e|. (5)

Next, consider the case that there are some repetitions among the Hi’s. For
example, suppose H3 is the component of the new G[D̃∗

e ] obtained by merging
H1 and H2. Since x1 is chosen to be in V (H1)∩Ie, we can choose x3 ∈ V (H2)∩Ie.
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In general, we are always able to choose xi’s such that they are in different
components of the original G[D̃∗

e ]. Hence (5) holds in any case. Combining (5)
with (4), we have

|D̃∗
e | ≤ |D∗ ∩ e| + 24|D0(a∗) ∩ e|. (6)

Let D̃ be the union of the modified D̃∗
e ’s, where e runs over all cells of P (a∗).

Then

|D̃| =
∑

e∈P (a∗)

|D̃∗
e | ≤

∑

e∈P (a∗)

(|D∗ ∩ e| + 24|D0(a∗) ∩ e|) = |D∗| + 24|D0(a∗)|.

Hence D̃ satisfies requirements (i) and (ii). This completes the proof. 
�

4 Conclusion

We presented a construction and an analysis of PTAS for the minimum connected
dominating set in unit ball graphs. This construction is different from that in
[6] for the minimum connected dominating set in unit disk graphs. In fact, the
construction in [6] cannot be extended to 3-dimensional space since a process
of merging many parts of connected components into one in boundary area
cannot work. Actually, our construction can be applied to unit ball graphs in n-
dimensional space for any n ≥ 1. In addition, when applied to unit disk graph, the
(1 + ε)-approximation constructed in this paper runs in time nO(1/ε2) while the
(1+ε)-approximation constructed in [6] runs in time nO((1/ε2) ln(1/ε)). Therefore,
Our construction also improves the running time.
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